
OLIVE (Optimism-Led Iterative Value-function Elimination)

Average Bellman error

Contextual Decision Processes (CDPs): episodic RL with rich observations
● Action space A, horizon H. 
● Context space X. A context is ...

○ any function of history that expresses a good policy & value function
○ e.g., last 4 frames of images in Atari games
○ e.g., (state, time-step) for finite-horizon tabular MDPs

● An episode: x1, a1, r1, x2, …, xH, aH, rH

● Policy  π : X → A.   Want to maximize                                          .

Value-based PAC-RL in CDPs
● Input: a function space F which contains Q*
● Output: π such that, w.p. ≥ 1-ᶖ, Vπ*

 - V
π  ≤ ε 

     after acquiring poly(|A|, H, log|F|, 1/ε, 1/ᶖ) trajectories.

Value-based RL in CDPs

RL problems with low Bellman rank

Rank of average Bellman error matrices
(maximum over h=1, …, H)

● Size |F| × |F|

● Q* has 0 Bellman error on all
roll-in policies (col of 0’s)

● Sample-efficient to 
evaluate a row at a time: 
generate trajectories using πf’ 
until h, then random action
+ importance weighting

Bellman rank
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Introduction: 3 challenges of RL
Long-term Planning

Generalization Exploration

?

Approximate DP PAC-MDP Theory

Contextual Bandits

Our Answer:
● A new measure – Bellman rank

○ Captures a wide range of 
tractable RL problems 

● A new algorithm – OLIVE
○ Polynomial sample 

complexity guarantee

In general, |X| is very large ⇒ Requires generalization!

Need additional condition, otherwise 
exponential lower bound applies. [1]

roll-in policy

candidate value function

Simplified Algorithm
(assuming no statistical errors)

● Generate trajectories using πf’ .
● Eliminate all f with non-zero 

Bellman error.

● Choose a new πf’ optimistically:
 f’ is the maximizer of

among the surviving functions.
● Repeat until                              .

Full matrix view

Factored matrix view

Geometric view

Analysis of iteration complexity
● If dark blue vectors are linearly indep., 

#iterations (for h) ≤ Bellman rank.

● Suffices to find a row that contains 
non-zero entry in surviving columns. 

● Optimism finds the row with a 
non-zero diagonal entry (for some h).

Analysis that considers statistical errors

● Can use doubling trick to guess unknown Bellman rank.
● Can compete with functions that have small non-zero Bellman errors.
● Can work with policy class + V-value function class (as opposed to Q).

○ Compete with the best (policy, V-value function) pair that respects 
Bellman equation for policy evaluation.

● Can accommodate infinite classes with bounded statistical complexity.
● Can handle approximately low-rank Bellman error matrices.

Extensions

[Todd’82]:                                                    =>   Significant reduction in ellipsoid volume |⟨    ,     ⟩| 

(Bellman rank = 2)

Sample complexity: M: Bellman rank

Problem Proof Sketch

Tabular MDP
(context = state)

Large MDP with 
Q*-irrelevant abstraction
(context = abstract state)

POMDP with rich obs.
and reactive value function

(context = current obs.)

Large MDP with 
low-rank transition

(context = state)

State distribution 
induced by πf’

Bellman error of f 
on each state

Bound

Bellman rank
≤

# states

Bellman rank
≤

rank of transition 
matrix

Bellman rank
≤

# hidden states

Bellman rank
≤

poly(# abstract 
states, # actions)
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PSRs with rich obs.
and reactive value function

(context = current obs.)

Linear Quadratic 
Regulators

(context = state)

Bellman rank
≤

poly(system dim, 
# actions)

Bellman rank
≤

poly(
state space dim, 

action space dim)

Expressing Bellman error matrix using a submatrix of the 
System Dynamics Matrix (naturally low-rank for PSRs).
(histories = all (h-1)-long seq., tests = length 2 seq.)

● Need policy class + state-value function class 
representation (see Extensions).

● Crucially depends on the choice of function classes: 
linear policies + quadratic value functions.

● Algorithm does not apply as-is due to continuous 
action space.
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