
OLIVE (Optimism-Led Iterative Value-function Elimination)

Average Bellman error

Contextual Decision Processes (CDPs): episodic RL with rich observations
● Action space A, horizon H.
● Context space X. A context is ...

○ any function of history that expresses a good policy & value function
○ e.g., last 4 frames of images in Atari games
○ e.g., (state, time-step) for finite-horizon tabular MDPs

● An episode: x1, a1, r1, x2, …, xH, aH, rH

● Policy π : X → A. Want to maximize .

Value-based PAC-RL in CDPs
● Input: a function space F which contains Q*
● Output: π such that, w.p. ≥ 1-ᶖ, Vπ*

 - V
π ≤ ε

 after acquiring poly(|A|, H, log|F|, 1/ε, 1/ᶖ) trajectories.

Value-based RL in CDPs

RL problems with low Bellman rank

Rank of average Bellman error matrices
(maximum over h=1, …, H)

● Size |F| × |F|

● Q* has 0 Bellman error on all
roll-in policies (col of 0’s)

● Sample-efficient to
evaluate a row at a time:
generate trajectories using πf’
until h, then random action
+ importance weighting

Bellman rank

Contextual Decision Processes with Low Bellman Rank are PAC-Learnable
Nan Jiang1,3, Akshay Krishnamurthy2, Alekh Agarwal3, John Langford3, Robert E. Schapire3

1University of Michigan, Ann Arbor 2University of Massachusetts, Amherst 3Microsoft Research, NYC

Introduction: 3 challenges of RL
Long-term Planning

Generalization Exploration

?

Approximate DP PAC-MDP Theory

Contextual Bandits

Our Answer:
● A new measure – Bellman rank

○ Captures a wide range of
tractable RL problems

● A new algorithm – OLIVE
○ Polynomial sample

complexity guarantee

In general, |X| is very large ⇒ Requires generalization!

Need additional condition, otherwise
exponential lower bound applies. [1]

roll-in policy

candidate value function

Simplified Algorithm
(assuming no statistical errors)

● Generate trajectories using πf’ .
● Eliminate all f with non-zero

Bellman error.

● Choose a new πf’ optimistically:
 f’ is the maximizer of

among the surviving functions.
● Repeat until .

Full matrix view

Factored matrix view

Geometric view

Analysis of iteration complexity
● If dark blue vectors are linearly indep.,

#iterations (for h) ≤ Bellman rank.

● Suffices to find a row that contains
non-zero entry in surviving columns.

● Optimism finds the row with a
non-zero diagonal entry (for some h).

Analysis that considers statistical errors

● Can use doubling trick to guess unknown Bellman rank.
● Can compete with functions that have small non-zero Bellman errors.
● Can work with policy class + V-value function class (as opposed to Q).

○ Compete with the best (policy, V-value function) pair that respects
Bellman equation for policy evaluation.

● Can accommodate infinite classes with bounded statistical complexity.
● Can handle approximately low-rank Bellman error matrices.

Extensions

[Todd’82]: => Significant reduction in ellipsoid volume |⟨ , ⟩|

(Bellman rank = 2)

Sample complexity: M: Bellman rank

Problem Proof Sketch

Tabular MDP
(context = state)

Large MDP with
Q*-irrelevant abstraction
(context = abstract state)

POMDP with rich obs.
and reactive value function

(context = current obs.)

Large MDP with
low-rank transition

(context = state)

State distribution
induced by πf’

Bellman error of f
on each state

Bound

Bellman rank
≤

states

Bellman rank
≤

rank of transition
matrix

Bellman rank
≤

hidden states

Bellman rank
≤

poly(# abstract
states, # actions)

hidden
state

rich
obs.

hidden
factor

state

state

abstract
state

PSRs with rich obs.
and reactive value function

(context = current obs.)

Linear Quadratic
Regulators

(context = state)

Bellman rank
≤

poly(system dim,
actions)

Bellman rank
≤

poly(
state space dim,

action space dim)

Expressing Bellman error matrix using a submatrix of the
System Dynamics Matrix (naturally low-rank for PSRs).
(histories = all (h-1)-long seq., tests = length 2 seq.)

● Need policy class + state-value function class
representation (see Extensions).

● Crucially depends on the choice of function classes:
linear policies + quadratic value functions.

● Algorithm does not apply as-is due to continuous
action space.

References
[1] Krishnamurthy, Agarwal, and Langford. PAC reinforcement learning with rich observations. NIPS 2016.
[2] Kearns and Singh. Near-Optimal Reinforcement Learning in Polynomial Time. ML 2000.
[3] Lihong Li. A unifying framework for computational reinforcement learning theory. PhD thesis, 2000.
[4] Osband and Van Roy. Model-based reinforcement learning and the eluder dimension. NIPS 2014.

PAC Learning:
known (e.g., [2])

Extends [1]

Known [3]

New

New

Known [4]

