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Abstract

What is the problem
Evaluating a policy using data produced by a different policy.
target policy behavior policy

When do we encounter the problem

Verify the safety of a new policy before deploying it in the real system
-- a critical step of RL in real-world applications, e.qg.

e Adaptive medical treatment

e Dialog systems

e Customer relationship management

Experiment: Comparing Point Estimates

Importance | Regression-based | Our Doubly Robust
Sampling methods estimator
Low variance? X
Controlled bias? X

We also proved statistical lower bound of the problem, and the DR
estimator matches the bound in certain scenarios.
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Experiment: Safe Policy Improvement

Notations

e MDP M = (S, A, P, R), initial state distribution /¢, horizon H
e Behavior policy 7, target policy 7

e Dataset D = {(Sla A1, 71952y« -+ SH+1) , At ™~ 7T0( ' ‘St)}
e Obijective: estimating the value of 7

VT =FE [Z£1 re | ag ~ (- \st)} , abbreviated as V

Existing Solutions

e Importance Sampling! (step-wise version) Ve, 15 := Zi | Pt T
where p; = m1(a¢|sy)/mo(ae|sy) and p1.¢ := Hirzl Pt/
o Unbiased, high variance (exp. in horizon)

e Regression-based estimator (a.k.a., “model-based”, “direct method")
e.g., in contextual bandits, regress R from {(s,a) — r}
VREG = 17(5) => m(d) E(s.}, a) (also need to regress P in the MDP case)
o Typically low variance with function approximation (FA).

o FA introduces uncontrolled bias.

Setting: given batch data, recommend better policies (and reject bad ones)

Detailed Experiment Setup: (domain: Mountain Car)
1. Split data into two halves, compute T from 1st half;
2. Mix T . and T, with various ratios;

3. Evaluate the mixed policies on the 2nd half of the data;
4. Recommend policy with the highest lower confidence bound (LCB).

Compared methods: DR and step-wise IS
+Gaussian approximation of LCB, i.e., LCB = mean - C * standard error.
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DR recommends good policies more aggressively
without sacrificing safety against bad policies.
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On the Hardness of the Problem

Doubly Robust Estimator for RL

Re-expression of step-wise |S in recursive form:

H+t—1 _ H+t
/r:>‘/step—18 — Pt (Tt B ‘/&;tep—IS)

y
- Q(sg, ar) L Unbiased estimate of 1/ (s, 1)

Apply DR trick at each horizon: (see bandit version in [2])
Ver{R_tJrl — I?('St) + Pt (’*"'t T Vfg{_t — @(St: t‘lt))

Properties of DR:
e Unbiased, regardless of how poor Q is (hat terms cancel in expectation).
e 0 variance if MDP is deterministic and Q = Q (hence V = V).

e step-wise IS = DR with @ = 0.
= DR can have lower variance if O is better than a trivial function!

A most difficult situation
e Partially Observable MDP.
e \Want the most credible evaluation: no assumption in evaluation phase.

Variance of DR in this case (simplification: only reward at step H+1)
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