
A most difficult situation
● Partially Observable MDP.
● Want the most credible evaluation: no assumption in evaluation phase.

Variance of DR in this case (simplification: only reward at step H+1)

Experiment: Comparing Point Estimates
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● MDP                               , initial state distribution    , horizon H

● Behavior policy     , target policy

● Dataset 

● Objective: estimating the value of      

, abbreviated as V
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What is the problem 
Evaluating a policy using data produced by a different policy.

   target policy        behavior policy

When do we encounter the problem
Verify the safety of a new policy before deploying it in the real system
-- a critical step of RL in real-world applications, e.g.
● Adaptive medical treatment
● Dialog systems
● Customer relationship management

We also proved statistical lower bound of the problem, and the DR 
estimator matches the bound in certain scenarios.

Abstract

Notations
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● Importance Sampling[1] (step-wise version)

where                                            and 

○ Unbiased, high variance (exp. in horizon)

● Regression-based estimator (a.k.a., “model-based”, “direct method”)

e.g., in contextual bandits, regress     from                     

                                                               (also need to regress P in the MDP case)

○ Typically low variance with function approximation (FA).

○ FA introduces uncontrolled bias.

Existing Solutions

Re-expression of step-wise IS in recursive form:

Apply DR trick at each horizon: (see bandit version in [2])

Properties of DR:

● Unbiased, regardless of how poor     is (hat terms cancel in expectation).

● 0 variance if MDP is deterministic and           (hence           ).

● step-wise IS = DR with          .
⇒ DR can have lower variance if      is better than a trivial function!

Doubly Robust Estimator for RL

Unbiased estimate of

IS REG

Setting: given batch data, recommend better policies (and reject bad ones)

Detailed Experiment Setup: (domain: Mountain Car)
1. Split data into two halves, compute πtrain from 1st half;
2. Mix πtrain  and π0 with various ratios;
3. Evaluate the mixed policies on the 2nd half of the data;
4. Recommend policy with the highest lower confidence bound (LCB).

Compared methods: DR and step-wise IS
+Gaussian approximation of LCB, i.e., LCB = mean - C * standard error.

Experiment: Safe Policy Improvement
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DR recommends good policies more aggressively
without sacrificing safety against bad policies.

Domain: Sailing

Horizon: H = 20

(max ρ1:H : 6×108)

Data: 2500 trajectories

On the Hardness of the Problem
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