
On Concentratability
Conjecture There exists a family of MDPs 𝓜, such that: any algorithm 
with realizable F as input cannot have poly(log|F|, H, C) complexity.

Why should be true: 
● No poly alg known under general func approx with realizability alone
● Divergence of ADP known for decades

Obvious? Info-theoretic lower bound?

Construct an exponential-sized model family => fail!
Reason: Batch model-based RL only needs realizability
● Create “small” (F, G) from 𝓜 : realizable & no inherent Bellman error
Lesson: Need to rule out model-based algorithms.

“Value-profile” idea doesn’t work in tabular constructions
● Hide info of s and only reveal {f (s,a): f ∈ F, a ∈ A} [4, 5]
● Issue with construction in [5]: not realizable
● When realizable: efficient learning exists using Q*-irrelevant abstraction

Why care?

● If true, construction is seriously stochastic and “non-bandit”
● All known RL lower bound are nearly deterministic and 

bandit-structured --- no reflection of the long-horizon challenge of RL

● May shed light on related questions
○ “True” horizon dependence in RL (JA18, COLT open problem)
○ Exploration with linear function approximation
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Data Assumptions
● Data distribution well covers states 

(and actions) visited by any policy π
● Measured by C: worst-case (over 

state &  policy) density ratio

“Concentratability Coefficient” State-action space
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Upper bounds
● Under above assumptions, poly(log|F|, C, H) sample complexity [1]
● We provide simplified analyses under minimal setup

○ Error rate for modified BRM [1] improved  n-1/4
 → n-1/2

Reactive POMDP M
● Hidden state dynamics 𝛤: 𝖹×𝖠→Δ(𝖹)
● Initial hidden state distribution 𝛤1 ∈ 

Δ(𝖹)
● Emission process P: 𝖹→Δ(𝖲)
● Trajectory generated as 

z1~𝛤1,s1~P(·|z1),a1~𝜋
(s1),r1~R(s1|a1),z2~𝛤(z1, a1),···

● Q★

  only depend on last observation 
and observations are Markov

Example in rich observations problems
● Reactive POMDP M
● 𝖹 is finite but 𝖲 can be arbitrarily 

large
● Admissible distribution 𝜈𝜋

(s,a)=P(sh=s,ah=a|𝜋) for some h
● Exists a distribution  μ such that  C ⩽ 

|𝖹×𝖠| and  μ can be obtained by 
taking a probability mixture of 
several admissible distributions

Exponential lower bound when C is unbounded
● Known & dtmn dynamics, unknown reward
● F realizes Q★

  for every possible MDP
● Similarly G => no inherent Bellman error
● No efficient exploration algorithm exists
● Any data distribution + any batch alg 

= special case of exploration algorithm

Implication
● C measures how exploratory the data is
● More than that! If MDP dynamics are 

unregulated, no distribution works!
● What kind of problems have “smooth dynamics”?

Connection to State Abstractions

𝜙 is bisimulation ⟺ F𝜙 (piece-wise constant) has 0 inherent Bellman error
● ⇒ is trivial
● ⇐:

○ Use f = 0 to witness reward errors.
○ Use f as the argmax of <P(s1, a) - P(s2, a),  f > for any aggregated s1 and 

s2 to witness transition errors.

where 𝒯 is the 
Bellman and 𝛱𝓕 is 
the projection

● Batch value-func approx (≈ADP): backbone of many deep RL alg
○ e.g., FQI --- DQN

● Prior works prove that they work under certain assumptions [1]
● Are they necessary? Do they hold in interesting scenarios?

○ We seek info-theoretic (alg-independent) hardness to justify necessity

Introduction

Representation Assumptions
● Realizability: Q★

 ∈ F
● Need more!  supf || Π𝐹 𝒯 f - 𝒯 f || ≈ 0

(or:     G =>   supf infg || g - 𝒯 f || ≈ 0)
“Inherent Bellman error”

Example of “smooth dynamics”
● High-dimensional observations generated 

from finite & small hidden state space
● Same as environments that allow 

sample-efficient exploration [3]
● Can construct small C by taking mixture of 

distributions of several policies

Setting: learn near-optimal policy from data {(s, a, r, s’)} + function class F
● (s, a) is drawn i.i.d. from “data distribution”

Fitted Q-Iteration [2]: Initialize f0 ∈ F
ft = solution to regression problem {(s, a) -> r + 𝛾 maxa’ ft-1(s’, a’)} over F       .

Modified Bellman Residual Minimization [1]
argminf supg LD(f; f) - LD(g; f),

 where LD(f; f’) := ∑(s,a,r,s’) [f(s, a) - r - 𝛾 maxa’  f’ (s’, a’)]2

Notations Bellman update :  (𝒯 f)(s, a) = R(s, a) + 𝛾 Es’|s, a[maxa’  f (s’, a’)]
Effective horizon :  H = 1/(1-𝛾)

Setting and Algorithms

High-level implications
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